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Abstract

This report explores the implementation of physical nonlinearities as activation functions
in analog neural networks. It aims to address the high power demands of digital deep
learning systems. Two experimental approaches are investigated.

The first utilizes a binary tunable phase metasurface, based on coupled resonators con-
trolled by PIN diodes, to modulate microwave reflections in a passive, low-power manner.

The second approach investigates the optical emulation of the Gaussian Error Linear Unit
(GELU) activation function. It uses structured incoherent light and Fresnel transmission
principles.

Together, these methods demonstrate the feasibility of embedding physical nonlinearities
into analog computing architectures, offering a pathway to energy-efficient deep learning
systems.
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1 Introduction

Neural networks are at the heart of Artificial Intelligence (AI). They reflect the brain’s
decision-making processes [1] and consist of a hierarchy of interconnected nodes (or artifi-
cial neurons) through which information flows from input to output. Each node computes
a weighted sum of its inputs and passes the result through an activation function to de-
termine whether to activate and propagate the signal forward. The output layer then
produces the network’s final decision or classification [2], [3].

Central to this is the nonlinear activation function. Without it, neural networks would
function as simple linear regression models, lacking the capacity to learn complex patterns
and relationships. Hence, making them considerably less attractive for deep learning
applications [4].

Digital neural networks, while effective, are inherently power hungry, especially when
scaled to the levels required by modern Artificial Intelligence. Thus forcing big data
companies, such as Google and Microsoft, to invest in nuclear power plants for the sole
purpose of powering the next waves of AI innovation [5], [6]. This creates a pressing need
for an alternative approach that can deliver the necessary computing power with greater
energy efficiency.

This report investigates the implementation of physical nonlinearities to enable low-power
activation functions in analog neural networks, addressing the research question: Non-
linear activation function for analog neurons in low power deep learning. By
leveraging the intrinsic nonlinear behaviors of physical systems, it is conceivable to achieve
the desired activation functions with lower energy consumption. We explore two distinct
physical mechanisms to achieve this.

The first approach focuses on the development and testing of a binary tunable meta-
surface. This metasurface utilizes coupled resonators capable of switching the phase
shift of reflected electromagnetic waves between discrete states (0 and π).

The second approach explores the optical equivalent of the Gaussian Error Linear Unit
(GELU) activation function. This method leverages the physical principles of Fresnel
equation and wave propagation.
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2 Tunable binary phase Metasurface

2.1 Objectives

The objective of the metasurface project is to develop and characterize a binary tunable
metasurface. Ambient electromagnetic interference (EMI) from sources such as WiFi
routers will serve as an input to the microwave cavity. Such a system would be passive
by definition and therefore shouldn’t be power demanding. This initiative builds upon
the papers ”Shaping complex microwave fields in reverberating media with binary tun-
able metasurfaces”[7] as well as ”Hybridized resonances to design tunable binary phase
metasurface unit cells”[8], which demonstrate a viable design for such a system.

Other objectives of this project are to conduct detailed simulations of the metasurface
to validate the design and ensure its theoretical feasibility. A key constraint is manufac-
turability: the design must be compatible with standard Printed Circuit Board (PCB)
fabrication tolerances and use dielectrics within the range of materials commonly avail-
able to manufacturers1. Once the design is finalized, a prototype of a single unit cell
will be assembled and characterized using a vector network analyzer (VNA) to verify
alignment with simulation results.

Subsequently, sufficient unit-cells will be assembled to create a phased array antenna that
will then be integrated into a microwave cavity. Within this cavity, the performance of
the phased antenna array will be characterized using a VNA.

A key deliverable of the project will be a complete, well-documented framework—including
all supporting code and methodologies—to enable future researchers to replicate and build
upon this work.

1A PCB is a combination of layers of dielectric material and a conductor. Our design for the meta-
material follows the same basic topology, hence we can see how it would correlate to do this if only as a
cost saving measure and to allow rapid prototyping.

5



2.2 Background

In this section, a detailed theoretical grounding will be done to explain all aspects en-
countered during the development of this project.

2.2.1 Proposed Unit Cell

The underlying geometrical configuration is inspired by prior works [7], [8] as seen in
Fig. (1).

Figure 1: Original unit cell design [8]

A key modification involves shifting the operational frequency from a single, fixed point
at 2466 MHz to a broader target bandwidth of 2427–2447 MHz. This bandwidth was
chosen as in the laboratory where the experiment is taking place, Channel 6 of the WiFi
band is the strongest2 (c.f Fig. 2).

Figure 2: WiFi Analyzer result in laboratory to choose operating frequency

2Found using a standard WiFi Analyzer application [9]
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The objective of the new surface is to be able to function with a minimum of a 60 MHz
bandwidth instead of a single fixed frequency. This bandwidth was calculated to allow for
standard PCB manufacturer fabrication tolerances. By designing for a broader band in
which the desired π phase shift occurs approximately, rather than at an exact frequency,
the system gains robustness.

We will see in later sections how, with these modifications, most geometrical aspects of
the unit cell will change.

Additionally, the choice of dielectric material is revised to align with standard PCB
fabrication capabilities, as the NELTEC NH9338ST used in earlier studies is not readily
available or manufacturable.

2.2.2 Dielectric loss vs lossless : FR4 vs ROGERS

The choice of dielectric material is important as its dielectric constant, ε, governs signal
propagation characteristics, while the loss tangent, tan δ, dictates the dissipation [10].

Initial simulations were conducted using lossless materials to validate the geometrical
parameters of the unit cell as the inclusion of losses introduces additional complexities.
Once the geometry was confirmed, the transition to lossy materials was expected to
result in predictable differences in attenuation levels, which are discussed in detail in this
corresponding background chapter.

Let us consider the propagation of an electromagnetic wave in a homogeneous, isotropic,
dielectric material. From Helmholtz equation we have that:

∇×∇× E = w2µ · ε · E =
w2

c2
µ0 · ε(w) · E (1)

whose solutions are given by3 E(r, t) = E(r)e−jwt.

The complex permittivity ε(w) of a dielectric material (denoted ε so forth for simplicity)
is expressed as:

ε = ε′ − jε′′ (2)

where ε′ represents the energy storage capability and ε′′ the energy loss per cycle. The
loss tangent tan δ is defined as the ratio of the imaginary to real components:

tan δ =
ε
′′

ε′ (3)

The power dissipated per unit volume in the dielectric is given by:

Ploss =
1

2
· w · ε′′ · |E|2 = 1

2
· w · ε′ · tan δ · |E|2 (4)

where ω is the angular frequency and |E| is the magnitude of the electric field. This
equation quantifies how materials with higher tan δ will dissipate more energy, reducing
the effective Q-factor of the resonator in question.

3The convention j for the imaginary unit was chosen to avoid confusion with current. Such convention
is applied to the whole paper
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The propagation of electromagnetic waves in lossy dielectric media can be described by
the complex propagation constant

γ = α + jβ (5)

where α is the attenuation constant and β is the phase constant.

For low-loss dielectrics (tan δ ≪ 1), the attenuation constant is approximated as:

α ≈ w
√

µε′

2
· tan δ (6)

indicating that even small tan δ values can cause significant attenuation at GHz frequen-
cies due to their linear dependence on frequency and field strength.

For example, at f = 2.4 GHz we can compare two different materials: Rogers RO4350B
and FR44. With Rogers RO4350B (ε′r ≈ 3.66, tan δ ≈ 0.0031) and FR4 (ε′r ≈ 4.5,
tan δ ≈ 0.02) [11], [12], and assuming µ = µ0, the ratio of attenuation constants is:

αFR4

αRogers

=

√
εFR4 tan δFR4√

εRogers tan δRogers

=

√
4.5 · 0.02√

3.66 · 0.0031
≈ 7.2

showing that, at 2.4 GHz, given tan δ and ε, FR4 is estimated to introduce ∼ 7× more
dielectric loss than RO4350B under identical conditions. This underscores the need for
low-loss dielectrics in applications requiring sharp spectral features and minimal insertion
loss.

The quality factor Q of a metasurface resonance is defined as:

Q =
w0

∆w
(7)

where ω0 is the resonance frequency and ∆ω is the full width at half maximum (FWHM)
of the resonance. The dielectric losses contribute to broadening ∆ω, thus reducing Q.
The overall Q of a resonant metasurface element can be approximated by:

1

Q
=

1

Qrad

+
1

Qdielectric

+
1

Qconductor

(8)

where Qdielectric accounts for material losses and is inversely proportional to tan δ, Qrad

accounts for radiative losses and Qconductor ohmic losses.

Thus, selecting low-loss dielectrics like Rogers (low tan δ) over FR4 directly enhances
the Q-factor, enabling sharper resonances, improved spectral selectivity, and reduced
insertion losses, all critical for high-performance RF metasurface applications.

From a theoretical perspective, the use of lossless dielectrics (tan δ → 0) leads to an ideal
metasurface response characterized by minimal insertion loss.

4choice is not coincidental, corresponds to analysis made to choose which dielectric will be used in
the metasurface
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However, practical materials inevitably introduce some loss, and the design challenge lies
in optimizing the geometry and material composition to mitigate its effects. The use of
low-loss substrates can sustain high-Q resonances.[13]

High-loss materials introduce power dissipation and signal attenuation, degrading the
metasurface’s resonance quality and efficiency. In contrast, low-loss materials enable
sharp resonance features, high field enhancement, and low insertion loss.[13]

An important consequence of introducing dielectric losses is the emergence of new atten-
uation features in the transmission spectrum. In lossless materials, ε′′ = 0, the propa-
gation constant is purely real for propagating modes resulting in no material absorption
and sharp resonances determined solely by geometry, c.f. Section 2.2.3. However, when
dielectric losses are present, ε′′ > 0, the propagation constant acquires an imaginary
component, β (c.f Eq. 5).

The frequency dependence of ε′′, and therefore tan δ, means that attenuation is not
uniform across all frequencies. Near natural resonances, the energy density stored is
higher, causing stronger interaction with the dielectric and leading to localized ’hot spots’
of energy dissipation. This results in new attenuation peaks, frequency ranges where
transmission drops sharply due to enhanced dielectric losses, even in regions that would
otherwise support high transmission in the lossless case.

Moreover, in periodic metasurfaces, electromagnetic waves satisfy Bloch-Floquet condi-
tions, and the allowed modes are determined by the periodic structure and dielectric
function. Losses introduce complex terms into the dispersion relation:

det |M(w, kB)− I| = 0, (9)

where M is the transfer matrix of the unit cell. In the presence of losses, the Bloch
wavevector becomes complex:

kB = k′
B − jk′′

B, (10)

with k′′
B representing the exponential decay of the wave amplitude along the propagation

direction [14]. This leads to the formation of attenuation bands, frequency regions where
wave propagation is suppressed due to dielectric loss, effectively creating loss-induced
stopbands that are absent in the lossless case.

Therefore we can see how the introduction of dielectric losses transforms the metasurface
electromagnetic behavior. It doesn’t simply broaden existing resonances, but also in-
troduces new attenuation features in the transmission spectrum. These effects highlight
the importance of low-loss dielectric materials and precise geometric design in ensuring
high-quality, high-efficiency metasurface performance.
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2.2.3 Geometric sensitivity

The geometric design of the metasurface is also directly tied to its performance and char-
acteristics. This dependence is because the physical dimensions of the resonant elements
are comparable to the wavelength of incident waves, leading to strong field localization
and enhanced sensitivity to dimensional variations [13].

When a resonator’s geometry changes, whether through variation in trace width, gap
dimension, or substrate thickness, it changes the distributed inductance (L) and capaci-
tance (C) of the system. This is important as the resonance frequency f0 can be expressed
as:

f0 ≈
1

2π
√
LC

(11)

Therefore, even subtle geometric changes introduce nonlinear shifts in f0. From Eq. 7 we
can see how this impacts the Q-factor and overall resonance behavior. Quantitatively, we
can find the impact of a relative change in inductance or capacitance on a relative shift in
frequency by doing a sensitivity analysis of Eq. 11. First we take the natural logarithm
to simplify the expression:

f0 =
1

2π
√
LC

↔ ln(f0) = ln(
1

2π
)− 1

2
ln(LC) (12)

Therefore we can clearly see that:

∆f0
f0

= −1

2

(
∆L

L
+

∆C

C

)
(13)

For example, consider a lossless microstrip line5 with w
h

≥ 1. The inductance and
capacitance can be found using:

L =
120πl

v0
·
[w
h
+ 1.393 + 0.667 ln

(w
h
+ 1.444

)]−1

(14)

C =
εrl

120πv0
·
[w
h
+ 1.393 + 0.667 ln

(w
h
+ 1.444

)]
(15)

with w the trace width, h the dielectric thickness, l the trace length, εr the relative
permittivity, and v0 the speed of light in vacuum. Using the main reflector patch of the
reference unit cell as an example:

w = 45.000mm, h = 2.000mm, l = 31.000mm, εr = 4.5, v0 = 3× 108m/s,

We find that L = 1.499nH, C = 32.11pF. Therefore, using Eq. 11: f0 ≈ 725.44MHz.

Suppose we apply a 1% reduction to these dimensions6.

We find that Lnew = 1.484nH, Cnew = 31.78pF.

Hence, ∆L = −1.5 · 10−11 and ∆C = −3.3 · 10−13.

5Microstrip line used as an example as it closely resembles the structure of the metasurface we are
designing.

6Which is coherent with standard manufacturing tolerances.
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Now we can use Eq. 13 to see how it impacts the resonance frequency:

∆f0
f0

= −1

2

(
∆L

L
+

∆C

C

)
= 0.0101 =⇒ ∆f0 = 7.36MHz,

Whilst this change in resonant frequency may seem small, Eq. 7 shows that it directly
affects the quality factor, and thus the sharpness of the resonance. This highlights how
even small geometric variations can directly impact the system’s performance.

At these frequencies, the Bethe small-hole coupling model and Babinet’s principle provide
additional theoretical foundations [15], [16]. The Bethe-Bouwkamp theory shows that the
coupling through sub-wavelength apertures scales with the cube of the aperture diameter,
d3, making them extremely sensitive to small dimensional changes. Similarly, Babinet’s
principle relates the electromagnetic response of complementary structures, indicating
that geometric perturbations in one structure are mirrored in its complement.

Perturbation theory of electromagnetic resonators provides a rigorous foundation for un-
derstanding this sensitivity. It predicts that a perturbation in permittivity δε(r) or
permeability δµ(r) leads to a first-order shift in resonance frequency given by:

∆ω

ω
≈ −1

2

∫
V
(δε(r)|E|2 + δµ(r)|H|2) dV∫

V
(ε|E|2 + µ|H|2) dV

(16)

where E and H are the unperturbed fields evaluated over the volume V of the resonator
[17]. This expression reveals that localized field enhancements, prevalent in metamaterials
due to strong confinement, amplify the impact of small geometric changes. Localized field
enhancements mean that even minor deviations in material properties or geometry can
lead to shifts in resonant frequency, affecting the device’s performance.

For example, consider a unit cell where electric fields are concentrated across a narrow
capacitive gap of width w = 0.2mm, over a volume ∆V = 1mm3. Assume that we are
focusing on a localized perturbation and that due to fabrication tolerances, a trace edge
shifts by ∆w = −0.05mm. Since the local electric field in the gap scales approximately
as E ∝ 1/w, the energy density scales as |E|2 ∝ 1/w2. Therefore:(

w

w +∆w

)2

=

(
0.2

0.15

)2

≈ 1.78.

Assuming the rest of the mode remains unchanged, and that the perturbed region origi-
nally had relative permittivity εr = 3.66 (RO4350B). The effective change in permittivity
within that region is:

δε(r) = ε0 · εr · (1.78− 1) ≈ 2.85 · ε0.
Substituting into Eq. 16:

∆ω

ω
≈ −1

2
· 2.85ε0 · |E|

2 ·∆V

ε0 · |E|2 · Vtotal

= −1

2
· 2.85 ·∆V

Vtotal

.

Now let’s assume that the region affected by the geometry change occupies just 1% of the
total volume where the field energy is concentrated. Then its contribution to the total
mode energy is ( ∆V

Vtotal
= 0.01) and we have that:

∆ω

ω
≈ −1

2
· 0.0285 ≈ −0.0143
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This corresponds to a frequency shift of ≈ −1.43%, or −34MHz at 2.4GHz, arising
purely from a 50µm geometric deviation.

This coupling of geometry and electromagnetic response shows that any deviation can rip-
ple through to affect resonance frequency, bandwidth, and phase characteristics, altering
key features of the unit cell.

2.2.4 Coupling of parasitic and reflector patch

The unit cell of the binary phase metasurface is based on the principle of hybridized
resonant elements, where the coupling between a reflector patch and parasitic patch
resonator is mediated by a PIN diode7. This diode functions as a tunable impedance and
allows the coupling strength to be controlled depending on its bias.

When the system is forward biased, the diode bridges the resonators, resulting in strong
coupling (κ > 0, where κ represents the coupling coefficient [18]), which leads to the
hybridization of their modes and enables resonance at the operational frequency. In this
state, the unit cell resonates, producing a π phase shift on the reflected wave.

In contrast, when reverse-biased, the diode acts as a high impedance and inhibits coupling
between the patches (κ ∼ 0). In this uncoupled state, the parasitic resonator operates
independently from the main reflector, and the system exhibits minimal interaction at the
design bandwidth. As a result, the eigen-frequencies of the system revert to the natural
resonances of the individual elements and there is negligible phase shift in the reflected
wave, rendering the unit cell effectively ’transparent’.

It is important to note that the ”on” and ”off” states are defined by convention. The
one explained here, forward-biased is on and reverse-biased is off, is rooted in our choice
of electronic control. Our choice contrasts the reference papers [7], [8] which work with
a reverse logic, forward-biased represents a 0-state and reverse-biased a π-state.

7c.f Annex for theoretical grounding and justification for choice of PIN diode.

12



2.2.5 Coupling mechanisms and mode hybridization

To fully understand how this design facilitates phase modulation and resonance control,
it is essential to examine the physical principles that govern coupling in this system.
The Coupled Mode Theory (CMT) serves as a foundational framework to describe the
coupling phenomena [19].

Building on the work of ”Analogy to Debye model in metamaterials: Resonant frequency
shifting due to coupling”[20] and their study of coupled metamaterial systems, it can be
understood how coupling in our system works. This paper provides a theoretical reasoning
to describe coupling mechanisms between resonant structures; specifically, they derive the
CMT equation, Eq. 17, governing the temporal evolution of the modal amplitudes of two
structures, a1(t) and a2(t), representing the localized field strengths in each resonator:

j
d

dt

[
a1
a2

]
=

[
w0 − jγ g

g w0 − jγ

]
(17)

Where g represents the strength of energy exchange between resonators, γ models intrinsic
and radiative losses, and ω0 is the uncoupled natural frequency of each resonator. The
model energies are given by |a1|2 and |a2|2. Solving this eigenvalue problem in the lossless
case first for simplicity, they obtain that:

w = w0 ± g (18)

which corresponds to the eigenstate
[
1, 1
]+

. Here,
[
1, 1
]+

represents the symmetric mode,
where both coupled elements oscillate in-phase with equal amplitude.

In the extended system of multiple unit cells, coupling interactions accumulate and man-
ifest as collective behaviors described by a tight-binding or Debye model analogy. Here,
the system’s Hamiltonian matrix takes the form:

H =


ω0 g 0 · · · 0
g ω0 g · · · 0
0 g ω0 · · · 0
...

...
...

. . . g
0 0 0 g ω0

 (19)

which leads to the dispersion relation:

w(k) = w0 ± 2g · cos(kd) (20)

where d is the lattice spacing and k the Bloch wavevector which describes the phase shift
of waves propagating through a periodic structure, quantifying how the wave’s phase
evolves between adjacent unit cells.

This reveals that inter-cell coupling induces frequency shifts twice those of intra-cell
coupling (ω0 ± 2g vs. ω0 ± g), with the relation gintra = 2ginter. This will be useful when
analyzing the experimental results.

Moreover, by controlling the coupling strength through the PIN diode bias, we can dy-
namically tune the metasurface’s phase response and resonance behavior.
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This tunability may be further enhanced by engineering slight asymmetries in the res-
onator design, which can introduce quasi-bound states in the continuum (quasi-BICs).

These modes, when realized, arise from destructive interference between resonant modes
that would otherwise couple to free-space radiation, effectively trapping energy within
the structure. As a result, these modes can exhibit high-Q resonances, characterized by
sharp spectral features and reduced radiative loss.

The high-Q nature of such modes is essential for applications requiring strong field local-
ization and spectral selectivity, such as phase modulation in our design. Unlike conven-
tional PIT or EIT, where coupling occurs between bright and dark modes, quasi-BICs
emerge from interference between nearly identical bright modes with minor structural dif-
ferences, offering the potential for robust and sharp spectral control even in the presence
of imperfections [21]–[23].

2.2.6 Chaotic Dynamics in a Microwave Cavity with Metasurface

The dynamics of electromagnetic fields within resonant cavities can exhibit either regular
or chaotic behavior, depending on the geometry, boundary conditions and other factors.

Considering a system with a steel box microwave cavity containing a phased array an-
tenna, chaotic behavior ensures isotropic mode mixing. Which reduces modal interference
and standing wave formation. This allows the metasurface to respond more uniformly
to the input wave (external EMI). Hence, it is interesting to determine if our system is
indeed chaotic.[24]

To investigate chaos in our system, we first establish its mathematical foundation. The
electromagnetic fields inside the cavity satisfy Maxwell’s equations with boundary con-
ditions imposed by the metallic walls and the metasurfaces. Expanding the fields as
superpositions of cavity modes:

E(r, t) =
∑
n

an(t) · En(r) (21)

H(r, t) =
∑
n

bn(t) ·Hn(r) (22)

The system reduces to a set of coupled nonlinear ordinary differential equations (ODEs)
for the mode amplitudes:

d2an
dt2

+ ω2
nan +

∑
m,k

αnmkamak + βn
dan
dt

= Fn(t) (23)

where ωn are the natural frequencies of the cavity, αnmk represent nonlinear coupling
coefficients from the metasurfaces, βn accounts for losses, and Fn(t) describes the external
forcing. More precisely, Fn(t) is the projection of the external field (i.e. incoming wave)
onto the mode profile En(r).

With the system clearly described, we can employ the Melnikov method to identify chaos.
The Melnikov method detects chaotic behavior in weakly perturbed Hamiltonian systems
by examining the behavior of saddle points and their associated manifolds [25].
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A saddle point is an equilibrium of a dynamical system where the Jacobian matrix of the
linearized system has eigenvalues with both positive and negative real parts. This means
there are directions in which trajectories approach the point and others in which they
diverge [26]. Such points can give rise to homoclinic orbits, trajectories that leave and
return to the same saddle point. Fig. 3 provides a graphical interpretation of this.

(a) 2D vector intuition (b) 3D intuition

Figure 3: Graphical intuition for Saddle point and Homoclinc Orbit

To apply the Melnikov method, the following conditions must hold [25]:

1. The unperturbed system is Hamiltonian with a hyperbolic saddle and homoclinic
orbit.

2. The perturbation is smooth, periodic and small.

3. The Melnikov integral converges.

We assume the cavity is Hamiltonian. This is justified because the unforced system is
lossless and conservative8 and we assume it supports discrete, well-defined modes in the
absence of external excitation. In a simplified single-mode approximation, this unper-
turbed system reduces to:

q̈ + ω2
0q + αq3 = 0 (24)

This corresponds to the potential:

U(q) =
1

2
ω2
0q

2 +
α

4
q4 (25)

Assuming α < 0, the potential forms a double well with a local maximum at q = 0 and

minima at q = ±
√

−ω2
0

α
. The saddle point is at the origin.

8Lossless means there are no resistive or radiative energy losses; conservative means the total energy
is preserved and the system can be described by a time-independent Hamiltonian.
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Therefore, system admits a homoclinic orbit of the form [26]:

q0(t) = A sech(λt) (26)

with constants A, λ determined by ω0 and α. This allows us to satisfy the first condition
of the Melnikov Method.

For the second condition, we assume the metasurface introduces a time-dependent, cubic
perturbation and that the external forcing is a harmonic source modeled by:

Fn(t) = F0 cos(Ωt) (27)

This is justified because 2.4GHz operation implies narrow-band harmonic content, and
broadband excitation can be decomposed into Fourier modes. So cosine forcing captures
the dominant term.

Therefore, the total perturbation takes the form9:

V (q, t) = −q cos(Ωt) (28)

And the full Hamiltonian becomes:

H(q, p, t) = H0(q, p) + ϵV (q, t) = H0(q, p) + ϵ · F0 · q · cos(Ωt) (29)

where H0 is the integrable unperturbed cavity, and ϵ ≪ 1 sets the perturbation strength.
We assume H0 is integrable, which is valid since we assume the unforced cavity supports
discrete, regular modes with known solutions. Therefore, the perturbation is smooth,
periodic in time and small amplitude, satisfying the second condition.

Finally, for the third condition, we evaluate the Melnikov integral along the separatrix
orbit, which in this context refers to a homoclinic orbit. For the unperturbed system,
this orbit is given by:

M(t0) = ϵ

∫ ∞

−∞
V (q0(t), t+ t0) dt = −ϵF0

∫ ∞

−∞
q0(t) cos(Ω(t+ t0))dt (30)

We know that sech(λt) = 2
eλt+e−λt . If we take the limit |t| → ∞, we get that:

sech(λt) ≈ 2e−λ|t| (31)

Therefore, for large t:
q0(t) ≈ 2Ae−λ|t| (32)

Meaning that the homoclinic orbit decays exponentially away from the saddle point.
Ensuring convergence of Eq. 30. Hence, all three conditions are satisfied.

Moreover, seeing that Eq. 30 is periodic in t0, it has simple zeros. This indicates transverse
intersections of stable and unstable manifolds.

9We model the perturbation as V (q, t) = −q cos(Ωt) so that the resulting equation of motion includes
an additive forcing term cos(Ωt). This represents a harmonic external field linearly coupled to the system,
consistent with a narrowband excitation at frequency Ω.
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We now state the formal result that connects transverse homoclinic intersections to chaos:

Theorem 3.4.3 (Smale–Birkhoff Homoclinic Theorem) [25]: Let a
smooth area-preserving map have a transversal homoclinic point to a hyper-
bolic fixed point. Then the map has a compact invariant set on which the
dynamics are topologically conjugate to a Bernoulli shift on two symbols.

Unraveling this whole theorem is beyond the scope of this report, the key takeaway is
that a single transverse intersection between stable and unstable manifolds is sufficient to
guarantee chaotic dynamics. In our system, this is shown by zeros Eq 30, which signal such
intersections. These imply the presence of symbolic dynamics, infinitely many unstable
periodic orbits, and sensitive dependence on initial conditions.

As a representative case, consider a cavity resonating at f0 = 2.4GHz, giving ω0 =
2π · 2.4× 109 rad/s, and let the nonlinearity coefficient be α = −1018 s−2. Then:

q0(t) ≈ 0.1 sech(109t),

and the Melnikov function evaluates to a sinusoid in t0 with zero crossings spaced at
2π/ω0. These crossings confirm the existence of transverse intersections required by the
Smale–Birkhoff theorem.

Putting all of this together, we conclude that the Melnikov method shows that even
minimal nonlinear structure in an RF cavity can compromise the integrable structure
and introduce homoclinic tangles and symbolic dynamics. We can clearly conclude that
our system is chaotic.

The presence of chaotic dynamics within the cavity has important implications for the
performance of the phased array antenna. Chaos ensures a more uniform and isotropic
field distribution, mitigating the formation of standing wave patterns that could bias
the array’s response. This leads to improved impedance matching, broader operational
bandwidth, and reduced coupling between elements[27]. In chaotic cavities, the field dis-
tribution becomes more ergodic, which can reduce localized standing waves and improve
average coupling uniformity.
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2.3 Simulations

In this chapter, we present a detailed analysis of the simulation results for the tunable
binary phase metasurface introduced in the theoretical framework. The objective is to
validate the theoretical principles governing the system’s behavior. The simulation studies
cover the response of the metasurface to variations in frequency, geometrical parameters,
and material properties, integrating the insights of coupling dynamics, hybridization, and
cavity perturbations.

Before analyzing the frequency response, it is essential to outline the simulation setup
used to model the metasurface. The full 3D geometry of the structure is shown in Fig. 4
and Fig. 5. Simulations were performed under idealized conditions, assuming a wave
propagates toward the metasurface, reflects, and returns directly along its path. Hence,
it wasn’t necessary to include the cavity in the simulations. The meshing strategy employs
high-frequency-adapted tetrahedral elements to ensure accurate resolution of the resonant
features of the design. The PIN diode is represented as two lumped elements as seen in
Fig. 610

Figure 4: Representation of boundary conditions setup (left) and single unit cell (right)

Figure 5: Representation of meshing strategy of metasurface

10c.f. Annex for details as to why a PIN diode can be reduced to two lumped elements.
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Figure 6: Representation of PIN diode as lumped element

We begin by examining the Smith chart representation of the reflection coefficient S11

seen in Fig. 7. The plotted trajectories for both the ”on” (PIN diode forward biased)
and ”off” (PIN diode reverse biased) states reveal the change in impedance as a function
of frequency.

Figure 7: Smith chart representation of S11 for the metasurface.

The looping paths observed correspond to the evolution of the complex impedance as
the frequency sweeps across the operational band. These results directly reflect the
theory of hybridized resonances, where the coupling between the resonant elements in the
metasurface leads to distinct impedance states. The shift of the resonant frequency and
the marked separation between the states are consistent with the coupled mode theory
equations discussed previously (Eq. 17). In particular, the observed impedance transition
correlates with the control of the coupling coefficient κ, which governs the hybridization
strength and thus modulates the reflection phase and magnitude (c.f Section 2.2.4).
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The phase response seem in Fig. 8 provides further evidence of the metasurface’s tun-
ability.

Figure 8: Phase response of S11 showing phase shift with frequency.

At 2.437 GHz, which corresponds to approximately the middle of the bandwidth identified
in Section 2.1, a sharp phase shift of nearly 180.03◦ is observed. Which demonstrates
the binary nature of the phase modulation. This behavior aligns with the prediction
that strong coupling, facilitated by the forward bias of the PIN diode, enables a phase
shift through hybridization of the resonant modes (c.f Section 2.2.4). The steepness of
the phase transition can be calculated to be 8.89MHz/deg (off) and 10.51MHz/deg (on).
This is indicative of the high-Q resonance associated with the chosen low-loss dielectric
material. Hence, supporting the theoretical framework which emphasized the importance
of dielectric loss tangent in sustaining sharp resonance features (c.f Section 2.2.2).

The magnitude response of S11, depicted in Fig. 9, shows a pronounced dip at the reso-
nance frequency, with ∼ −8.6dB ”on” state compared to the ∼ −7dB ”off” state.

Figure 9: Magnitude response of S11 (in dB) highlighting the resonance dip.
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This observation confirms that the forward bias of the diode enhances the coupling
strength, leading to stronger hybridization and a higher amplitude resonance. The 1.6dB
difference is a manifestation of reduced reflected power, consistent with the energy cou-
pling into the resonant structure. This is in direct agreement with the expressions derived
for Q-factors and insertion losses (c.f Eq. 4 and Eq. 8) in the Section 2.2.2, where low-loss
dielectrics enable narrower and more selective resonances.

A closer inspection of the real and imaginary components of S11, seen in Fig. 10, elucidates
the resonance behavior further. The real part exhibits characteristic peaks and valleys,
while the imaginary part shows complementary behavior, both tracing the hybridization
dynamics anticipated by perturbation theory (c.f Section 2.2.5).

Figure 10: Real and imaginary parts of S11 as a function of frequency.

The splitting of resonant features between the two states illustrates the system’s ability
to toggle between different coupling regimes, thus modulating the phase and magnitude
responses. This detailed behavior reflects the theoretical derivations where geometric
perturbations (Eq. 13) and material variations (Eq. 16) shift the eigenfrequencies and
affect the stored and dissipated energy within the structure (Eq. 4).

Parametric studies further elucidate the system’s sensitivity to geometric and material
variations. The variation of parameter y2, shown on Fig. 11, shows shifts in the phase
transition curves, underscoring the system’s sensitivity to geometric tolerances, a phe-
nomenon anticipated by the perturbation model of resonance frequency (Eq. 11). Similar
shifts are observed when varying parameter x6, Fig. 12. These results confirm the im-
portance of precise fabrication tolerances, as even small geometric changes can result in
substantial shifts in the resonance behavior. This is theoretically consistent with the
dependence of f0 on L and C (Eq. 11), which are geometrically determined, and with the
Bethe-Bouwkamp scaling for subwavelength coupling (c.f Section 2.2.3).
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Figure 11: Phase response variation with parameter y2.

Figure 12: Phase response variation with parameter x6.

The influence of the thickness parameter t0, seen in Fig. 13, reveals a degree of robust-
ness in the design with minimal impact on the phase transition characteristics. This
observation suggests that the metasurface exhibits stable behavior under slight thick-
ness variations as described in the theoretical analysis of cavity perturbations and field
dynamics (c.f. Section 2.2.5).

Figure 13: Phase response variation with parameter t0.

The simulation results provide a comprehensive validation of the theoretical models pre-
sented in the preceding chapters. They demonstrate the metasurface’s capacity for tun-
able phase and magnitude control through hybridized resonance mechanisms, with re-
sponses closely tied to geometric design, dielectric properties, and coupling dynamics.
The insights gained from these simulations not only confirm the feasibility of the design
but also offer guidelines for practical implementation.
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2.4 Experimental Setup and Results

The final geometric layout of the tunable metasurface unit cell is shown in Fig. 14.

Figure 14: Layout of the metasurface unit cell, all dimensions in millimeters.

Each unit cell incorporates a DC biasing network, as shown in Figure 15. A 39nH inductor
(L1 and L2), model LQW2BAS39NG00L, was selected for its self-resonance near 2GHz,
ensuring effective isolation of the DC bias path from RF signals. A 39Ω series resistor (R1)
sets the bias current. The PIN diode used is the Skyworks SMP1345-079LF (D1), chosen
for its fast-switching behavior suitable for GHz-range modulation11. This configuration
enables reliable diode switching with minimal RF reflection and supports a clean binary
phase shift.

Figure 15: Schematic of the metasurface biasing circuit.

The back plane is implemented as a solid copper ground plane. To streamline manufac-
turing, additional spacing was added around the pins, as illustrated in Fig. 14 otherwise,
soldering would have been quite complicated.

11Selected based on [28]
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An external surface-mount connector was also included, allowing for the use of custom-
crimped cables to ensure mechanical robustness. This addition facilitates reliable commu-
nication between the hardware and the Raspberry Pi 5 (RP5), which is used to control the
PIN diodes via its GPIOs. The diodes were specifically chosen to have a forward current
of 10mA, matching well with the RP5’s typical GPIO driving current of ∼ 15mA.

Fig. 16 shows the fully fabricated and soldered metasurface array, consisting of 25 unit
cells arranged in a 5× 5 grid. The use of wider pads during the design phase, along with
solder paste during assembly, helped minimize solder lines, thereby reducing parasitic
capacitance that could otherwise arise from them.

Figure 16: Assembled metasurface

Finally, the antenna phased array was mounted on a simple PVC sheet as seen in Fig. 17.
Holes were drilled to accommodate the connectors, and custom 3D-printed supports were
attached to slightly elevate the sheet. This provided enough clearance to route all the
cables neatly underneath the structure. The Raspberry Pi 5 (RP5) was also positioned
beneath the array to minimize potential electromagnetic interference and maintain a clean
layout.

Figure 17: Base of metasurface
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Finally, the entire assembled structure was placed inside a microwave cavity, as shown in
Fig. 18. An antenna was mounted on the top surface of the cavity, and a steel cover was
added to enclose the front, completing the shielding enclosure.

Figure 18: Completed microwave cavity with metasurface and antenna

The reflection coefficient S11 was measured using a Vector Network Analyzer (VNA) over
the 2.4 − 2.6GHz frequency band. The objective of this project was to characterize the
metasurface as a whole; consequently, only two global states were investigated: all unit
cells on or all off. Due to time constraints, partial or patterned configurations were left
as future work (cf. Section 2.5).

As shown in Fig. 19, the off-state response exhibits a resonance near 2.463GHz, charac-
terized by a dip in the S11 magnitude and a sharp phase of 44.66◦. This indicates strong
resonant absorption and confirms that the structure supports a well-defined resonant
mode when the diode is non-conducting.

In contrast, the on-state response, shown in Fig. 20, displays a shifted resonance profile.
The dip in magnitude is reduced, and the phase is now at −145.08◦. This behavior is
consistent with the diode’s transition to a low-impedance conducting state.

The phase shift between the on and off states at 2.4627GHz was measured to be 189.74◦.
This experimentally confirms the metasurface’s binary phase control capability, demon-
strating its ability to toggle between two distinct electromagnetic states. Note that the
operating frequency of 2.4627GHz is different from the 2.437GHz in the simulations. This
can be attributed to manufacturing tolerances. This relates to Section 2.2.3, where we
showed how minor changes can have significant impacts on operational frequency.
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Figure 19: S11 magnitude and phase with diode reverse-biased (off-state).

Figure 20: S11 magnitude and phase with the diode forward-biased (on-state)
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The effects of intercell and intracell coupling can be seen in Fig. 21, 22. Within the
designed bandwidth, the phase response shows clear modulation between different states,
indicating strong coupling effects. Outside this band, the phase remains nearly uniform,
with only minor shifts. This behavior highlights the frequency-selective nature of the
coupling and echoes the mechanism discussed in Section 2.2.5, where each unit cell inter-
acts both with the incident wave (intercell), Eq. 18, and with neighboring cells (intracell),
Eq. 20.

Figure 21: Whole spectrum with all unit cells on

Figure 22: Whole spectrum with all unit cells off
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2.5 Conclusion

This chapter established the design, simulation, and experimental validation of a binary,
reconfigurable microwave metasurface capable of inducing discrete phase shifts through
hybridized resonant elements controlled by PIN diodes. Theoretical analysis of dielectric
loss, geometric sensitivity, and coupled mode dynamics (Section 2.2) guided the design
process. Simulations confirmed the viability of the concept (Section 2.3), and measure-
ments in a chaotic microwave cavity (Section 2.4) experimentally validated a 189.74◦

phase shift between the diode states, confirming controllable binary operation.

While this global on/off switching behavior validates the metasurface as a reconfigurable
electromagnetic surface, the next step is to move beyond global binary control and toward
spatially patterned actuation. Where the individual state of each unit cell encodes a
component of a computational task. For example, applying binary patterns such as ArUco
markers could serve as a testbed for programmable, spatially varying electromagnetic
responses—effectively turning the metasurface into a learnable field modulator.

However, the system’s extreme sensitivity to mechanical tolerances and front-plate align-
ment complicates inverse design and reproducibility. Even a 1 mm displacement was
shown to drastically alter the measurement results. This highlights the need for cou-
pling the hardware with robust software-driven optimization that learns which unit cells
to activate in response to a global objective. The physical system could then act as a
learnable, nonlinear layer whose behavior is tuned not by adjusting weights in code, but
by toggling physical resonators.
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3 Optical GELU

3.1 Objectives

The optical project aims to demonstrate how spatially structured, incoherent light emit-
ted from an LED matrix can leverage the Fresnel equation and wave propagation to
emulate the functional behavior of conventional nonlinear activation functions. Specifi-
cally, it targets the Gaussian Error Linear Unit (GELU).

A key objective is to create the core framework, comprising both the optical setup and
the supporting software for preprocessing, control, and data interpretation.

3.2 Background

3.2.1 Non-Linear Activation Functions

The two most common non-linear activation functions are the Rectified Linear Unit
(ReLU) and Gaussian Error Linear Unit (GELU).

ReLU is defined as:
ReLU(x) = max(0, x) (33)

The GELU function, as used in PyTorch, is approximated as:

GELU(x) = 0.5x

(
1 + tanh

[√
2

π

(
x+ 0.044715x3

)])
(34)

Exploring the difference between these activation functions from a Neural Network per-
spective is outside the scope of this project. Instead we strive to compare them from a
’physical’ perspective to the Fresnel transmission coefficient for p-polarized light12.

If we compare these three functions side by side to illustrate the motivation for our
project, we obtain:

Figure 23: Graphical comparison of ReLU, GELU and Fresnel Equation

12Explained in detail in Section 3.2.2
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Hence, the motivation for this experiment becomes quite clear. From Fig. 23, we observe
a stark difference between ReLU and GELU. The former exhibits a sharp, piecewise-linear
behavior, while the latter introduces a smooth, probabilistic activation curve. However,
the distinction between GELU and the Fresnel reflection coefficient for p-polarized light
is more subtle. Both share a smooth, sigmoidal-like shape and a continuous response.
This visual resemblance hints at a shared underlying structure or principle, which our
work aims to better understand and formalize.

3.2.2 Fresnel Equations

The Fresnel equations describe how an electromagnetic wave interacts with a dielectric
interface. Specifically, how it splits into reflected and transmitted components when tran-
sitioning between two media with different refractive indices, n1 and n2. This boundary
interaction is central to the project, as it enables passive control over both the amplitude
and phase of the transmitted wave.

We specifically employ p-polarized light, where the electric field lies in the plane of in-
cidence. This polarization exhibits a key property, at the Brewster angle the reflection
coefficient rp = 0. This results in total energy transmission into the second medium with
no reflection loss. In contrast, s-polarized light (with the electric field perpendicular to
the plane of incidence) does not exhibit this zero-reflection condition at any angle, making
it less desirable for this application.

The amplitude transmission and reflection coefficients for p-polarized light are given by:

tp =
2n1 cos θi

n1 cos θt + n2 cos θi
, (35)

rp =
n2 cos θi − n1 cos θt
n2 cos θi + n1 cos θt

(36)

Where θi, θr and θt are the incident, reflected and transmitted angle respectively. We
can visualize this system as:

Figure 24: Physical context of Fresnel Equations
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These expressions depend on both the angle of incidence θi and the transmitted angle θt,
which are related via Snell’s Law:

n1 sin θi = n2 sin θt (37)

To evaluate how much power is reflected or transmitted at the interface, we define the
corresponding intensity coefficients:

Tp =
n2 cos θt
n1 cos θi

|tp|2, (38)

Rp = |rp|2 (39)

These quantify the fractional power transmitted and reflected, respectively. At the Brew-
ster angle:

θB = arctan

(
n2

n1

)
(40)

we obtain Rp = 0, and Tp → 1, maximizing transmission while preserving phase conti-
nuity. This enhances the quality and efficiency of the system by minimizing undesired
reflections and maximizing deterministic field modulation.

3.2.3 Wave propagation

The planar LED matrix functions as a reconfigurable, discretized light source, where each
pixel corresponds to an input vector x. Inputs are mapped to lateral displacements d
from the optical axis, which define emission angles θ as:

θ = arctan

(
d

f

)
≈ d

f
(41)

where the paraxial approximation θ ≪ 1 holds for small angles. f is the focal length of
the lens after the screen.

Each LED emits incoherent light, producing an electric field Ei(r, t) with a rapidly fluc-
tuating phase. Because the LEDs are mutually incoherent, the total intensity observed
at a point r is the sum of the individual intensities:

Itotal(r) =
N∑
i=1

|Ei(r)|2 (42)

There are no cross-terms, EiE
∗
j = 0 for i ̸= j, since the fields are statistically uncorrelated.

This results in a smooth, speckle-free intensity profile that is robust to environmental
noise and phase instabilities. This incoherent summation enables each pixel to act as an
independent input channel.

Moreover, the emission profile of planar LEDs follows Lambert’s cosine law, meaning
their radiant intensity varies according to:

I(θ) = I0 cos θ (43)

where I0 is the peak intensity along the surface normal. This angular dependence arises
from geometry. Although light is emitted isotropically within the LED’s semiconductor
material, the apparent emitting area decreases by cos θ for an observer or lens at angle θ.
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This relationship can be derived by considering a differential surface patch dA emitting
into a solid angle dΩ. The flux received by a detector at angle θ is proportional to the
projected area dA cos θ (by trigonometry), giving:

dΦ ∝ dA cos θ dΩ ⇒ I(θ) =
dΦ

dΩ
∝ cos θ (44)

This cosine falloff does not imply that the LED emits less power at wider angles, only
that the same power is geometrically redistributed over a larger apparent surface. A
graphical intuition for this can be seen in Figure 25:

Figure 25: Graphical intuition for projected area dependence of angle

This figure illustrates how, for an emission angle of θ = 60◦, the projected spot area on
the surface is twice as large as for normal incidence (θ = 0◦). Since I(θ) ∝ cos θ, and
cos 60◦ = 0.5, the same emitted power is distributed over an area that is 1/ cos θ = 2
times larger. This geometric scaling is the core of Lambert’s cosine law.

This has two important implications for the optical setup. First, off-axis emitters con-
tribute less light to the final intensity pattern due to the cosine angular falloff, naturally
introducing a spatial weighting. Second, the optical response is inherently non-uniform
as each pixel’s contribution depends on its emission angle and the corresponding pro-
jected intensity. When combined with the angle-dependent modulation introduced by
the interface, this behavior should enable the system to achieve our objective.

32



3.3 Experimental Setup and Results

The optical system was designed to project and manipulate structured light fields emitted
from a programmable 64×64 LED array. Fig. 26 shows the physical cavity and layout.
A linear polarizer at the input of the system ensures the selection of p-polarized light.

Figure 26: Photograph of the experimental optical cavity. Left: close-up of the alignment
stage and lens mounts. Right: full optical path.

During testing, it was observed that reflections of the screen off the metallic optical table
generated parasitic rays, which degraded image quality. To mitigate this, a physical
barrier was constructed to block unwanted reflections and improve optical performance
(visible as the black cardboard wall in Fig. 26).

A functional diagram of this system can be seen in Fig. 27:

Figure 27: Schematic of the optical system. The gray vertical bar represents a physical
wall in the setup. Ray paths are shown for illustrative purposes. This diagram is not to
scale and is intended only for conceptual reference.
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To understand how the screen is demagnified at the output, we analyze the first stage of
the system, a three-lens relay composed of f1, f2, and f3, as shown in Fig. 27. The LED
screen is placed 300mm before lens f1, so the object distance is:

s1 = 300mm (45)

Using the Thin lens equation:

1

s′1
=

1

f1
+

1

s1
=

1

75
+

1

300
=

1

60
=⇒ s′1 = 60mm (46)

The second lens is placed 35mm beyond the first, so the object distance for lens f2 is:

s2 = s′1 − 35 = 25mm (47)

This means the intermediate image is a virtual object for lens f2, and we compute:

1

s′2
=

1

f2
+

1

s2
=

1

50
+

1

25
=

3

50
=⇒ s′2 ≈ 16.7mm (48)

The third lens is placed 85mm beyond f2, so the object distance for f3 is13:

s3 = 85− s′2 = 68.3mm (49)

Applying the lens equation once more:

1

s′3
=

1

25.4
+

1

68.3
⇒ s′3 ≈ 18.5mm (50)

The overall magnification is the product of the transverse magnifications of the three
lenses:

M =

(
s′1
s1

)(
s′2
s2

)(
s′3
s3

)
=

(
60

300

)(
16.7

25

)(
18.5

68.3

)
≈ 0.036 (51)

Thus, the system produces a straight, highly demagnified image of the LED pattern.
The resulting image quality is sharp and aberration-minimized, as demonstrated in the
projected calibration pattern shown in Fig. 28.

13This follows from the convention that object distance s is measured from the lens to the object,
positive if the object is to the left of the lens (i.e., a real object). Since the image formed by f2 lies
16.67mm before f3, and the separation between f2 and f3 is 85mm, the object distance for f3 is computed
as s3 = 85− 16.67
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(a) Image as seen from camera (b) Image as seen by observer

Figure 28: Calibration pattern from the LED array projected through the full optical
setup. Confirms image quality, proper focus, and alignment.

To evaluate whether the emission from all LEDs would collectively form a coherent field
envelope, we activated every pixel and recorded the spatial intensity. Since the LEDs
are mutually incoherent, we expected spatial averaging to yield a uniform field. The 3D
intensity surface in Fig. 29 confirms this: the resulting field is effectively planar, with
only minor pixel-to-pixel intensity fluctuations.

Figure 29: 3D intensity distribution with all LEDs turned on. The resulting planar
wavefront confirms incoherent field averaging and system uniformity.

To validate phase propagation and spatial resolution in the system, a coherent, polarized
laser beam was injected into the same optical path. The resulting intensity pattern at
the output plane, Fig. 30, exhibits a fringe-like structure and central symmetry, consis-
tent with a Fresnel diffraction envelope. While not an ideal or interpretable response,
the structured pattern confirms that the system supports phase-coherent transport and
that no major aberrations or misalignment dominate the beam path. This visual check
provides a reference for interpreting results under incoherent illumination.
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Figure 30: Coherent laser injected through the system produces a Fresnel-like interference
pattern. Confirms phase-preserving optical path and proper imaging alignment.

Now we test the whole pipeline as shown in Fig. 31. The system’s output reveals a struc-
tured yet irregular intensity profile. While this confirms that the optical system responds
nonlinearly to changes in input angle, the observed behavior lacks the smooth, asymmet-
ric, and saturating characteristics of a GELU-like transformation. Instead, the pattern
suggests strong angular sensitivity with unintended divergence or distortion, making it
unsuitable in its current form.

Figure 31: Interference pattern observed under selective pixel activation. The irregularity
confirms high spatial sensitivity and supports programmable field shaping.

This result highlights a mismatch between the intended nonlinear mapping and the sys-
tem’s actual response. The complexity and asymmetry of the output indicate that even
small angular variations at the input result in amplified and spatially inconsistent inten-
sity shifts at the output plane. To understand the root of this mismatch, we next examine
the system’s optical structure by using its transfer matrix.
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We model the extended six-lens system using ABCD ray-transfer matrices. The full
system includes six lenses (f1 through f6) and seven propagation distances (din, . . . , dobs),
with a Pellen–Broca prism inserted between f3 and f4. The total system matrix is given
by:

M = T (dobs) · L(f6) · T (d56) · L(f5) · T (d45) · L(f4) · T (d34) · P ·
L(f3) · T (d23) · L(f2) · T (d12) · L(f1) · T (din) (52)

where each element is defined by:

L(f) =

[
1 0

−1/f 1

]
(53)

T (d) =

[
1 d
0 1

]
(54)

P =

[
1 0
0 1

]
(55)

The polarizer is excluded from this analysis, as it modifies only the polarization state,
not the geometric propagation. The Pellen–Broca prism introduces angular deviation and
beam displacement, but is approximately treated as an identity transform in ABCD anal-
ysis when ray angles remain small and collimation is preserved. More accurate modeling
would involve an angular beam steering matrix or coordinate transformation.

Substituting the numerical values, we obtain the overall ABCD matrix:

M =

[
1 35
0 1

]
·
[

1 0
− 1

25.4
1

]
·
[
1 80
0 1

]
·
[

1 0
− 1

35
1

]
·
[
1 70
0 1

]
·
[

1 0
− 1

75
1

]
·[

1 135
0 1

]
·
[

1 0
− 1

25.4
1

]
·
[
1 85
0 1

]
·
[

1 0
− 1

50
1

]
·
[
1 35
0 1

]
·
[

1 0
− 1

75
1

]
·
[
1 300
0 1

]
(56)

Therefore:

M =

[
1.42 −339.90
0.08 17.67

]
=

[
A B
C D

]
(57)

The nonzero element C = 0.08mm−1 indicates that the system has net positive optical
power, corresponding to an effective focal length of

feff =
1

C
=

1

0.08mm−1
= 12.5mm, (58)

meaning the system is converging rather than afocal. This contributes to beam compres-
sion and intensity localization in certain regions of the output plane.

The angular magnification term D = 17.67 plays a critical role in shaping the system’s
sensitivity to input direction. For a ray entering at angle θin, the output angle is given
by the ray transfer equation

θout = Cyin +Dθin.
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Assuming the LED matrix subtends a modest angular range of θin ∈ [−5◦, 5◦], or approx-
imately ±0.087 radians, the output angular spread becomes

θout ∈ D · θin ≈ 17.67 · [−0.087, 0.087] ≈ [−1.54, 1.54] radians ≈ [−88◦, 88◦].

This nearly full-hemisphere spread indicates an extreme amplification of small angular
differences, leading to high sensitivity and instability in the spatial intensity profile at
the output.

The matrix element A = 1.42 implies moderate lateral magnification:

yout = Ayin +Bθin,

which suggests that displacements in the input plane are also expanded by a factor of
1.42 at the output. However, the dominating contribution comes from the B term, with
B = −339.90mm, which introduces a large angular-to-spatial coupling. Specifically, rays
entering with nonzero angle θin are displaced at the output by

yout ⊃ Bθin ≈ −339.90mm · θin.

Even for small angles, say θin = 0.05 radians (≈ 2.86◦), this results in a displacement of

yout ≈ −339.90mm · 0.05 ≈ −17mm,

which is substantial. This confirms that the system produces virtual images far outside
the physical bounds of the optical assembly, leading to rapid beam divergence and the
irregular output distributions seen in Fig. 31.

Overall, the ABCD matrix shows that the system behaves as a converging, angularly
magnifying, and spatially dispersive relay. These properties explain the failure to repro-
duce a smooth, monotonic, GELU-like transformation. Instead of compressing angular
inputs into a predictable sigmoid-like intensity profile, the system spreads and distorts
them, creating highly structured and unpredictable outputs. This mismatch motivates
a redesign of the optical layout to suppress angular magnification (D), reduce beam
divergence (smaller |B|).
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3.4 Processing Algorithms

Raw images captured by the camera include significant noise, ambient light, and optical
distortion. To extract meaningful we apply a multi-stage processing pipeline.

The process begins with the raw optical input, as shown in Fig. 32. Each spot corresponds
to a light source from the LED matrix that has propagated through the cavity and optical
system.

Figure 32: Raw optical image captured from the LED matrix after propagation through
the optical system.

To isolate the actual diffraction spots from background illumination, we apply binary
thresholding:

T (x) =

{
1, if I(x) ≥ τ

0, otherwise
, (59)

where I(x) is pixel intensity and τ is empirically chosen. Fig. 33 shows the result: a clean
binarized image that highlights high-intensity optical features.

Figure 33: Binarized image after thresholding, showing optical hotspots corresponding
to active LED elements.
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Next, we apply morphological filtering to suppress noise and smooth the detected shapes.
This includes erosion, dilation, opening, and closing using cross-shaped structuring ele-
ments:

(I ⊕ S)(x) = max
s∈S

I(x− s), (60)

(I ⊖ S)(x) = min
s∈S

I(x+ s). (61)

These operations remove isolated noise pixels and sharpen blob boundaries. Fig. 34 shows
the effect of morphology, yielding clean and connected components.

Figure 34: Post-morphological filtering. Unwanted noise is removed and features are
consolidated.

From the cleaned binary image, we extract contours and compute shape statistics. Each
diffraction spot is modeled as an ellipse using moments:

Mpq =
∑
x,y

xpyqI(x, y), (62)

with centroids:

cx =
M10

M00

, cy =
M01

M00

. (63)

These are then fitted to ellipses by minimizing the conic section error:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0. (64)

Figure 35: Elliptical fits superimposed on the extracted features
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For each detected feature (ellipse), we define a region mask Me(x) and compute the mean
optical intensity:

Ie =

∑
x∈Me

I(x)

|Me|
, (65)

which estimates the total optical power delivered to that spatial region.

3.5 Conclusion

This chapter explored the use of structured incoherent light, modulated by a programmable
LED matrix and passed through a multilens optical system, to approximate nonlinear
activation functions such as GELU. Beginning with theoretical motivation rooted in the
similarity between the Fresnel transmission curve and GELU (Section 3.2), the optical
setup (Section 3.3) was designed to map input angles, determined by pixel position, onto
output intensities. Image processing tools (Section 3.4) allowed for detailed extraction of
the spatial patterns generated by selective input activation.

The system demonstrated a nonlinear transformation between angular inputs and output
intensity, but not one that resembles GELU. Instead, the intensity profiles were highly
irregular and angularly distorted. ABCD matrix analysis revealed a potential reason:
the system amplifies input angles rather than compressing them. With D = 17.67 and
B = −339.90mm, even modest input angles produce broad, virtual output divergence
incompatible with activation-like behavior.

However, these findings also provide a roadmap for improvement. A redesigned optical
system should aim to reduce angular magnification, suppress angular-to-spatial displace-
ment. In this regime, angular variations in input could be directly mapped to output
intensity in a smoother, more controlled manner—potentially achieving a GELU-like
shape.

As an immediate extension, the system could be miniaturized and tested with a smaller
LED array. This would assess whether the lens relay and angular mapping remain func-
tional under constrained spatial conditions. More broadly, combining the optical system
with a differentiable simulation pipeline would enable data-driven design of optical acti-
vation layers, where parameters are optimized end-to-end for a target nonlinear function.

In summary, while the current system falls short of implementing a GELU-equivalent
transform, it establishes a viable experimental framework. With further refinement and
task-driven design, this approach holds promise.
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4 Annex

Schottky diode vs PIN Diode

In the context of high-frequency RF circuit design, particularly for metasurfaces intended
for low-power nonlinear activation functions, the selection of appropriate diode compo-
nents is critical. PIN diodes are uniquely suited for such applications due to their distinct
physical structure and operational characteristics, which confer advantages over alterna-
tives such as Schottky diodes. This annex has for objective to give a brief overview of
the underlying mechanism of RF diodes and to justify our choice of PIN diodes.

Physical Structure and RF Behavior:

A PIN diode consists of a wide, undoped intrinsic (I) layer between p-type and n-type
regions. Under forward bias, the injection of minority carriers into the I-layer floods
it with charge, resulting in a plasma of electrons and holes. This plasma reduces the
resistivity of the I-layer, effectively turning the diode into a low-resistance conductor for
RF currents. The resistance Ri of the I-layer under forward bias can be approximated
as: Ri =

Li

q·µ·N ·A , where Li is the intrinsic layer thickness, q is the elementary charge, µ is
the carrier mobility, N is the carrier concentration, and A is the cross-sectional area.

Under reverse bias, the intrinsic region becomes fully depleted, creating a wide depletion
region that presents a high impedance to RF signals. This behavior is described by the
depletion capacitance Cd: Cd = ϵ·A

Wd
, where ε is the permittivity of the semiconductor

material, and Wd is the width of the depletion region. The large Wd of the intrinsic
region results in a low junction capacitance, reducing RF signal leakage in the off state
and providing high isolation.

On the other hand, Schottky diodes operate based on majority carrier conduction charac-
terized by fast switching times and low forward voltage drops. However, their low reverse
breakdown voltages and high reverse leakage currents limit their effectiveness in high-
isolation, high-power RF applications. Schottky diodes also exhibit significant parasitic
capacitance: Cj ≈ ϵ·A

Wj
where Wj is the narrow depletion width of the Schottky barrier,

leading to greater signal leakage at high frequencies.

In contrast, PIN diodes offer higher breakdown voltages and superior isolation in the
reverse-biased state. The wider depletion region achieved in the intrinsic layer of the
PIN structure minimizes junction capacitance and enhances isolation. Additionally, the
resistivity of the I-layer under forward bias can be precisely controlled by adjusting the
forward bias current If : Ri(If ) ≈ Vf

If
, where Vf is the forward voltage. This predictable,

tunable resistance is essential for applications such as RF switching, attenuation, and
phase shifting.

PIN diodes exhibit excellent linearity and power handling capabilities, critical for high-
frequency metasurface designs. The high RF isolation achieved in the off state and the
low insertion loss in the on state make them ideal for modulating RF signals in dynamic
metasurface arrays. The dynamic resistance Rd and capacitance Cd of the PIN diode
under RF excitation can be modeled as: Z(w) = Rd +

1
j·w·Cd

where ω is the angular
frequency of the RF signal. The ability to modulate Rd via forward bias current provides
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a reliable mechanism for controlling the phase and amplitude of RF signals.

The choice of PIN diodes for this project is grounded in their superior physical and
electrical characteristics, including high isolation, tunable resistance, low capacitance,
and excellent linearity at RF frequencies. These properties make them ideally suited
for integration into dynamic metasurface arrays designed to implement physical nonlin-
ear activation functions in low-power, high-frequency neural network architectures. The
mathematical models provided herein offer a robust foundation for predicting device be-
havior and optimizing system performance.

This switching behavior leverages the unique properties of PIN diodes, which function
as current-controlled resistors at high frequencies. When forward-biased, carriers are
injected into the diode’s intrinsic region, dramatically lowering resistance and enabling
efficient RF conduction. In contrast, reverse bias depletes the carriers, restoring high
impedance and effectively opening the RF path. This duality allows for rapid, controlled
transitions between high-reflection (∆ϕ = π) and transparent states (∆ϕ = 0) within the
metasurface.

Modeling Pin Diodes:

Our chosen pin diode can be modeled as two lumped elements as seen in Fig. 36

Figure 36: Modeling of PIN diode [28]

With Ls = 0.7nH, Rs = 1.5Ω, Rp ≥ 10kΩ and CT = 0, 18pF
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